
232 UCRL-LR-105821-95-4

PLANAR AND CYLINDRICAL RAYLEIGH–TAYLOR
EXPERIMENTS ON NOVA (HEP2)

B. A. Remington

S. V. Weber

M. M. Marinak

W. W. Hsing

N. M. Hoffman

Introduction
A high-density fluid on top of a low-density fluid is

Rayleigh–Taylor1 (RT) unstable. Driven by gravity, ran-
dom perturbations at the interface between the two
fluids will grow: fingers (“spikes”) of the heavier fluid
will poke through the lighter fluid, and bubbles of the
lighter fluid will rise into the heavier fluid. The RT
instability and its shock-driven analog, the Richtmyer–
Meshkov2 (RM) instability, have been a focus of research
in inertial confinement fusion (ICF) for some time.3–19

In ICF, the driver—laser light, x rays, or ions—heats
the outer layer of the capsule wall, causing it to ionize
and expand rapidly. The result is a low-density ablated
plasma accelerating the high-density capsule wall
(“pusher”). The ablation front is RT unstable, and
outer-surface imperfections grow. This growth can
seed perturbations at the pusher inner wall, which in
turn become RT unstable during deceleration and stag-
nation. Ultimately, pusher material can mix into the fuel,
degrading performance.

The role of the RT instability in ICF can be under-
stood heuristically as follows. The goal of ICF is to
maximize the fuel core pressure Pcore for a minimum
applied (ablation) pressure Pa. To see how we might
do this, we write20

(1)

where R0/∆R is the capsule aspect ratio (the ratio of
initial shell radius to shell thickness) and R0/Rs the
convergence ratio [the ratio of outer capsule radius to
final compressed hot fuel radius (the “hot spot” radius)].
The [(R0/∆R) + 1] factor results from converting the
kinetic energy of the pusher into pressure at stagnation,
by using Bernouilli’s theorem, i.e., Pstag = Pa + (1/2) ρv2.
The (R0/Rs)

0.9 factor results from the pressure multi-
plication due to the spherically imploding shock wave
and is based on the self-similar solutions of Guderley.20

From Eq. (1), we immediately see that maximum pres-
sure amplification occurs for high-aspect-ratio capsules
with a high convergence ratio.

The RT instability limits the aspect ratio, however,
as we see from the following. In the linear regime, per-
turbation growth is exponential in time,

(2)

where the exponent           represents growth in terms
of perturbation e-foldings. A dispersion curve for the
RT growth rate γ can be written as 8

(3)

where k = 2π/λ is the perturbation wave number, g is
the pusher acceleration,                    is the density gradi-
ent scalelength at the ablation front, β is a multiplier
usually set in the range of 1 to 3, va =     /ρ is the abla-
tion velocity,      is the mass ablation rate per unit area,
and ρ is a characteristic density at the ablation front. If
we assume (1) a constant acceleration over a distance 
S ≈ R0/2, (2) that 80% of the pusher is ablated over this
distance (            ≈ 0.8∆R), and (3) a density gradient
scale length that is 10 to 20% of the shell thickness 
(L = α∆R, with α = 0.1–0.2), then we can approximate
the perturbation e-foldings as 

(4)

Here we have substituted k = l/R, where l is the mode
number of a spherical harmonic. We have chosen β ~1
which is typical of indirect drive. When ∆R/R is small,
Eq. (4) shows that the perturbation e-folding is large.
One can maximize R0/∆R, and hence the pressure
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ṁ

v dta∫

γ
α

dt R
R

R
R∫ ≈

+

















l

l
l

1
0 8

1 2

∆
∆

/

– . . l
l

l



233

PLANAR AND CYLINDRICAL RAYLEIGH–TAYLOR EXPERIMENTS ON NOVA (HEP2)

UCRL-LR-105821-95-4

amplification, only to the extent that the RT growth
will allow. 

The situation for a capsule implosion, illustrated in
Fig. 1, can be approximated as GT = G1 f G2, where the
total growth factor GT has been decomposed into growth
at the ablation front or outer surface G1, fractional
feedthrough f to the inner surface or pusher–fuel inter-
face, and growth at the inner surface G2. Experiments to
measure mix (and hence GT) directly in implosions are
difficult, typically relying on spectroscopic tracer layers
or yield degradation to signal the onset of mix.18,19 The
dominant source for the total perturbation growth and
subsequent mixing, however, is the growth G1 of outer-
surface perturbations during the acceleration phase.
This can be measured directly with high precision with
face-on experiments in planar geometry. The integral
effect, namely, outer-surface growth, feedthrough, and
inner-surface growth, can be measured with side-on
imaging of cylindrical implosions. The HEP2 campaign
comprises these two areas—planar and cylindrical 
RT experiments.

The evolution of a single-mode perturbation at the
ablation front of an accelerated planar foil is expected to
have three distinct phases. (1) When the drive first turns
on, a strong shock is launched through the foil during
compression. The shock front will typically be deformed,
bearing the imprint of any initial surface imperfections.
The behavior of this perturbed (or “rippled”) shock front
is dynamically similar to that produced by the RM
instability.2 Material behind the shock develops a lateral
velocity component, moving from regions in which the
foil was thinner (initial perturbation valley) towards
regions in which the foil was thicker (initial perturbation
peak), increasing the areal density modulation. The
shape of the shock front is not constant, but evolves with

time.21,22 The areal density modulation may decrease or
even reverse phase, if the foil is thick enough with
respect to the perturbation wavelength. (2) After the
shock breaks out of the back of the foil (the side away
from the drive), and a rarefaction wave returns to the
ablation front, the compressed foil accelerates as a unit.
Perturbation growth continues, now as a result of the RT
instability. The linear regime is defined by kη << 1, where
k = 2π/λ represents the perturbation wave number and λ
and η are the perturbation wavelength and spatial
amplitude. In the linear regime, the perturbation grows
exponentially as given in Eq. (2), namely, η(t) = η0eγt,
where the growth rate γcan be written approximately as
in Eq. (3) in the form of a dispersion curve,8 

(3) After sufficient growth, kη is no longer small and the
perturbation enters the nonlinear regime. The shape of
the perturbation changes from sinusoidal to “bubble and
spike,” which corresponds in Fourier space to the gen-
eration of higher harmonics.7 Within the framework of
third-order perturbation theory,23 the amplitudes of the
perturbation fundamental mode (first harmonic) η1, sec-
ond harmonic η2, and third harmonic η3 can be written as

(5a)

(5b)

(5c)
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FIGURE 1. Schematic showing how RT perturbation growth affects an implosion. The quantities GT, G1, f, and G2 correspond to the total
growth factor, growth factor at the outer surface during acceleration, feedthrough to the inner surface, and growth factor at the inner surface
during deceleration. (20-03-1293-4392pb02)
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where ηL is the linear-regime spatial amplitude given
by Eq. (2). The wave numbers of the first three harmonics
correspond to kn = 2πn/λ, n = 1, 2, 3. At third order, we
see in Eq. (5a) the occurrence of negative feedback to the
first harmonic; that is, the growth of the fundamental
is decreased. The perturbation growth is said to “satu-
rate.” In the asymptotic limit of the nonlinear regime,
the bubble amplitude can be written as

(6)

which corresponds to a perturbation growing at its ter-
minal bubble velocity,24

(7)

where F = u2/gl is the dimensionless Froude number,
which depends only on the shape of the perturbation
(here u, g, and l are characteristic flow velocity, acceler-
ation, and spatial scale, respectively). As derived by
Layzer,25 F1/2 = 1/(6π)1/2 = 0.23 in two dimensions (2-D)
and 0.36 in three dimensions (3-D) for an axisymmetric
bubble. If we define the transition into the nonlinear
regime as taking place when the growth in the funda-
mental mode is reduced by 10%, then from Eq. (5a) we
have                    , or ηL/λ ≈ 0.1, which is a typical and
widely used threshold for nonlinearity. This same tran-
sition criterion results if one assumes that the onset of
nonlinearity occurs when the linear-regime perturbation
velocity is equal to the asymptotic nonlinear bubble
velocity, namely,            , or γη = (kg)1/2η = (gλ/6π)1/2.
Rearranging again leads to η/λ ≈ 0.1 at saturation.

In the nonlinear regime,26–31 mode coupling leads
to the appearance of “beat” modes ki ± kj. To second
order, this can be written as 

(8)

Eq. (8) is derived in the Appendix. Mode coupling
redistributes a multimode perturbation to longer and
shorter wavelengths and affects the saturation of indi-
vidual modes. If a perturbed interface has a sufficiently
dense Fourier composition, it becomes convenient to
think of the perturbation in terms of a characteristic wave
number kchar = 2π/λchar and a characteristic spatial
amplitude ηchar. In these terms, the criterion for the onset
of saturation becomes kcharηchar no longer being
small. Within a continuum model,32 this leads to individ-
ual constituent modes saturating when their amplitudes
reach a threshold Sk given by

in 2-D (9a)

in 3-D (9b)

where L represents the system size and ν is a parameter
determined by comparison with simulations or data.

We present here the results of an extensive, multiyear
experimental and computational study of perturbation
growth on planar foils and on imploding cylinders
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FIGURE 2. (a) The experimental configuration consists of a cylindrical
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CH(Br) foil mounted on the wall. (b) In the hohlraum, eight λ = 351-nm
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driven with an x-ray drive. We investigated initial per-
turbations of the form

where kn = 2πn/λ, for m = 1, 2, and 8. The modes are enu-
merated as harmonics of the longest repeating pattern. In
the next section, we discuss the “Experimental Details,”
and in “Drive Characterization” we present our drive
characterization work. The following sections discuss
“Single-Mode Experiments,” “Two-Mode Experiments,”
and “Eight-Mode Experiments.” Our 3-D single-mode
experiments and simulations are discussed in “3-D
Single-Mode Experiments.” The cylindrical experiments
are discussed in “The RT Instability in Cylindrical
Implosions,” and conclusions are given in “Summary.”
The final section, “Appendix: Amplitude of Coupled
Modes,” discusses a second-order perturbation model.

Experimental Details
Figure 2 shows the experimental setup for the pla-

nar experiments using a shaped, low-adiabat drive.
Sinusoidal surface perturbations are molded onto one
side of a planar 750-µm-diam bromine-doped CH foil
[C50H47Br2.7, or “CH(Br)”] of density ρ = 1.26 g/cm3.
A subset of the experiments were with fluorosilicone
(SiOC4H7F3 or “FS”, at ρ = 1.28 g/cm3). As shown in
Fig. 2(a), the foil is mounted across a hole in the wall of

a 3000-µm-long, 1600-µm-diam cylindrical Au hohlraum
with the perturbations facing inwards. The foil is diag-
nosed by back-illumination with an 800-µm-diam
spot of x rays created by irradiating a backlighter disk
with one or two λ = 528-nm Nova33 beams, typically
delayed relative to the drive beams, as shown in Fig. 2(b).
The modulations in foil areal density cause modula-
tions in the transmitted backlighter x-ray flux, which
are recorded as a function of time with gated or
streaked x-ray imaging diagnostics. This is illustrated
in Fig. 3 (taken from Refs. 14 and 15).

Instrumental spatial resolution is most conveniently
expressed as the modulation transfer function (MTF),
namely, the ratio of observed to actual contrast [∆lnE,
where E = film exposure]. The MTF for the 22×-magni-
fication grazing-incidence Wölter x-ray microscope34

used for most of these experiments is given by35–37

(10)

with σ = 6.65 µm; Fig. 4(a) shows M vs perturbation
wavelength. The inverse Fourier transform of M(k) cor-
responds to an exponential resolution function,

(11)

Figure 4(a) also shows a curve corresponding to Eq. (10)
with σ = 8.1 µm; this is the lowest MTF that is consis-
tent with the data.

Equations (10) and (11) correspond to the “top” sec-
tor of the Wölter microscope, which was used for most
of the shots in this work. The “west” sector was used
in one experiment; its resolution (which is slightly
worse than that of the top sector) is given by 

(12)

with α = 0.22, σ1 = 3.5 µm, and, σ2 = 18 µm. Table 1
gives the correspondence between experiment and
Wölter sector used. Figure 4(b) shows the MTF for one
of the gated x-ray pinhole cameras used for some of
these experiments, the FXI.38 This camera was run at
8× magnification with 10-µm pinholes.

The Wölter microscope is a grazing-incidence x-ray
optic, so it has a high-energy cutoff in its reflectance.
We measured this cutoff on an identical second Wölter
optic,36 as illustrated in Fig. 5. The solid curve in 
Fig. 5(a) gives the x-ray emission spectrum resulting
from electron-beam excitation of a cold Nb target at 5 kV.
The dotted curve represents the same spectrum after
double reflection off the x-ray optic. The ratio of these
two curves (dotted/solid) gives the reflectance, shown
in Fig. 5(b). The high-energy cutoff is at ~3 keV; the
peak reflectance is only about 10%. The smooth dashed
curve in Fig. 5(b) is the theoretical double-bounce
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FIGURE 3. Sample images taken (a) in side-on geometry, (b) in face-
on geometry, and (c) from 2-D simulations for planar experiments
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reflectance of an ideal Ni surface at grazing angles of
1.1° and 1.2°, multiplied by an overall degradation fac-
tor of 0.3, and represents the reflectance assumed in
the post-processing of the simulations for these experi-
ments. The degradation factor is presumably caused
by surface roughness and absorption by contaminants
that have settled onto the Wölter optic surface.

Figure 6 shows the measured (time-integrated)
spectra for Mo, Rh, and Sc, the backlighter materials
used in the face-on experiments. On separate shots, the

backlighter disks were irradiated with 528-nm light at
I ≈ 1 × 1014 W/cm2. The Mo spectrum [Fig. 6(a)] is
dominated by n = 3→2 L-band emission at 2.4–2.8 keV;
the Rh spectrum [Fig. 6(b)] is also dominated by n = 3→2
L-band emission, here at 2.8–3.3 keV. The Sc spectrum
[Fig. 6(c)] is dominated by the n = 2→1 Heα K lines.
These backlighter materials were chosen by consider-
ing the total optical depth (OD) of the experimental
foils and the response of the recording instruments.

TABLE 1. Compilation of the data for each face-on single-mode shot, using the Wölter x-ray microscope. The ten columns in order
give (1) foil material, (2) drive pulse shape, (3) perturbation wavelength, (4) the perturbation initial amplitude, (5) the foil thickness,
(6) the total laser energy, (7) the sector (top or west) of the Wölter microscope used, (8) the backlighter material used, (9) the observed
growth factor, and (10) the predicted growth factor from the LASNEX simulations.

Single-mode

λ η0 Thk ELaser
Foil Drive (µm) (µm) (µm) (kJ) Sector Back-lighter Gobs GLASNEX

CH(Br) Shaped 100 2.4 48 16.1 Top Rh 3.8 5.8
CH(Br) Shaped 70 2.4 50 18.5 Top Rh 6.5 7.3
CH(Br) Shaped 50 0.42 57 17.4 West Mo 19.9 24.0
CH(Br) Shaped 30 1.5 53 15.1 Top Rh 7.2 9.7
FS Shaped 50 4.5 57.5 19.3 Top Rh 6 4
FS Shaped 50 0.8 56.0 16.6 Top Rh 22 20
FS Shaped 50 0.16 65.5 16.7 Top Rh 75 75
FS 1 ns sq. 50 2.2 34.2 13.4 Top Dy 2.9 2.8
CH 1 ns sq. 50 2.5 59.4 13.9 Top U 1.7 1.9

FIGURE 4. (a) Instrument modulation transfer function (MTF) vs perturbation wavelength for the 22×-magnification grazing-incidence
Wölter x-ray microscope. The data points represent the measured MTF from the observed t = 0 contrast from accelerated rippled-foil targets.
The data points and error bars for the λ = 50 µm and λ = 75 µm perturbations correspond to the means and standard deviations of the
deduced MTF from seven and nine separate rippled-foil shots, respectively. The other data points correspond to single shots at each wave-
length, and the error bars correspond to the standard deviation assuming that each individual period is independent data. The black curve
represents a best fit of the data with the function M(k) = 1/[1 + (kσ)2], with σ = 6.65 µm; the gray curved is M(k) for σ = 8.1 µm. (b) MTF for
the FXI gated imager at 8× magnification with 10-µm pinholes and a Sc backlighter. (20-03-0394-0738pb03)
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Drive Characterization
Figure 7 shows the low-adiabat x-ray drive used in

most of these experiments.14,15,37 This drive was gen-
erated by focusing eight 351-nm, 2.0–2.4-kJ, 3.3-ns
temporally shaped Nova beams into the hohlraum,
where they are converted to approximately thermal 
x rays. The black curve shows the total power of the
eight laser beams on a typical shot. The intensity dur-
ing the first 1.6–1.8 ns of the drive, called the “foot,” is
about a factor of 10 lower than in the 16-TW peak,
which occurs at 2.6 ns. This shaped pulse leads to a
lower adiabat and higher compression than if the same
total laser energy were delivered in a square pulse. The
x-ray drive used in our analysis results from a two-

dimensional (2-D) hohlraum simulation39 using the
experimental laser power PL, and is shown as radiation
temperature TR(t) by the gray curve in Fig. 7. This 
x-ray drive has been checked by two independent
experimental techniques: (1) shock breakout trajectory
through an Al wedge mounted on the hohlraum and
viewed with a streaked UV imager,40 and (2) accelerated-
foil trajectory using streaked side-on radiography.14,37

The resulting TR profile has a ~95-eV foot increasing to
200 eV in the peak at about 3 ns. This shape mimics, on
a short time scale, the early stages of an ignition pulse
shape, which typically has a ~90-eV foot followed by a
stepped ramp to a 300-eV peak.41

FIGURE 5. Measured Wölter reflectivity vs x-ray energy. In (a) the solid curve corresponds to the x-ray emission spectrum from a Nb trans-
mission target bombarded by a focused electron beam accelerated across a potential difference of 5 kV. The dotted curve is the same except
the x rays have undergone two ~1° grazing-incidence reflections off the Ni surface of the Wölter x-ray optic. (b) The solid histogram gives the
ratio (dotted/solid) of the two curves in (a) and corresponds to the Wölter reflectance. The smooth dashed curve represents the calculated
reflectance for two ideal Ni surfaces at grazing angles of 1.1° and 1.2°, with an overall degradation factor of 0.3. (20-03-0394-0740pb02)
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Figure 8 shows the drive spectrum during the foot and
at peak power for the nominal conditions of this investi-
gation. For comparison we also show Planckian spectra
corresponding to radiation temperatures TR = 95 eV dur-
ing the foot and TR = 200 eV during the peak. The actual
drive spectrum used derives from a full hohlraum 
simulation,39 but is not too different from the time-
dependent combination of a Planckian with the spectrum

from a planar Au disk illuminated by a shaped λ = 351-nm
laser pulse. The weighting of the two spectra for this
case (shown in Fig. 8) corresponds to the relative solid
angles subtended by the foil mounted on the hohlraum
wall for the eight laser spots in the hohlraum versus that
for the wall area not directly illuminated with laser light.
The contribution of the Au M-band emission from the
laser spots causes the drive spectrum to be “harder”
than a Planckian spectrum.

From the strong-shock relations for ideal fluids,42

the shock-front velocity vs and pressure P behind the
shock front are related by                  , where ρus is the
density of the unshocked material. From Ref. 43 we
can write P ∝ TR

7/2, so we have TR ∝ P2/7 ∝ vs
4/7.

When applied to Al, for example, and after correcting
for albedo effects, this becomes40

(13)

with TR in eV and vs in cm/s; the numerical factor
arises from the equation of state (EOS) of Al. A 

FIGURE 7. Drive expressed in terms of laser power and x-ray radiation
temperature. Black curve (scale on right) gives total power vs time of
the eight λ = 351-nm drive laser beams. The adopted drive temperature
TR(t), shown by the gray curve (scale on left), was obtained from a 2-D
hohlraum simulation. The first 2 ns represents the “foot”; peak laser
power PL occurs at 2.6 ns; peak TR occurs at 3 ns. (20-03-1293-4397pb02)
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FIGURE 9. The drive is characterized with measurements of shock
trajectory, deduced from measuring in face-on geometry the shock
breakout time across a variable-thickness Al wedge mounted on the
wall of the hohlraum. Corresponding 1-D LASNEX simulations are
shown. (a) Results for 19.4-kJ shot discussed in Figs. 7 and 8. 
(b) Results for ELaser = 17.6 kJ. (20-07-0394-0744pb03)
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measurement of shock velocity therefore allows us to
deduce the ablation pressure and drive temperature.

Figure 9 shows measured shock trajectories for two
shots. The measurements were made by viewing a
wedged Al witness plate face-on with a streaked UV
imager.40 The shock breakout time is recorded as a
function of position across the increasing thickness of
the witness plate, allowing the shock trajectory to be
reconstructed. Figure 9 shows the experimental trajec-
tories at two laser energies and the corresponding
simulations from 1-D LASNEX44 using the drive
described above (scaled in proportion to the laser power
history for the lower-energy shot). The absolute timing
of the shock trajectory data relative to drive turn-on 
(t = 0) was experimentally determined in the data
shown in Fig. 9(b) but not in Fig. 9(a), where only the
relative time was measured. The agreement between
the data and simulation is very good. The data for the
higher-energy shot [Fig. 9(a)] and the simulations for
both shots show a two-component trajectory corre-
sponding to an initial shock launched by the foot, and
a delayed second shock coming from the peak of the
drive. For the measured two-shock system in Fig. 9(a),
the first shock has a velocity v1 ≈ 20 µm/ns, and the
second shock has a peak velocity of v2 ≈ 53 µm/ns. The
simulations give velocities of 16 and 46 µm/ns, respec-
tively. Applying Eq. (13) directly to the data gives 
TR ≈ 120 and 215 eV for the foot and peak of the drive,
as compared to 100 and 200 eV from the simulations.

The foil trajectory, which is a measure of the gross
hydrodynamics, was obtained by viewing across the
rear edge of the foil in side-on geometry,14,15 as shown
in Fig. 10. This trajectory is reproduced very well with
the 1-D simulation using the drive model described
above, as illustrated in Fig. 11 for a CH(Br) foil. The
back edge of the foil does not begin to move until
shock breakout at ~2.6 ns. The foil then accelerates
during the interval 2.6 ≤ t ≤ 3.6 ns, after which the
drive is turning off and the foil begins to coast. The
black curve represents the foil trajectory from the 1-D
LASNEX simulation; the gray curve represents the
acceleration of the ablation front, defined as the zone
of half peak density. The fluctuations in the acceleration
at 0.2 and 2.2 ns are due to the passage of the first and
second shocks. The inset in Fig. 11 gives the ablation
velocity                           and density gradient scalelength

, where       is the mass ablation rate per unit
area,            is the peak density, and ρ and ∇ρ are the
density and its gradient. (Computationally, the scalelength
L is taken as the minimum value of                             ).
Calculations based on this drive give better agreement
with experiment than was obtained in preliminary results.45

It is instructive to look in more detail at the effect of
this shaped drive on the foil. Figures 12(a)–12(c) show
results from the 1-D LASNEX simulations for radiation
drive temperature, ablation pressure (defined as peak
pressure in the simulation), and foil peak density as
functions of time. Figures 12(d)–12(f) give the corre-
sponding spatial profiles of electron temperature Te(z),
pressure P(z), and density ρ(z) at five times spanning

FIGURE 10. Foil trajectory (for a FS foil) in side-on geometry measured
with the Wölter x-ray microscope. The profiles are of optical depth OD,
and are artificially offset vertically by time, as indicated on the right-
hand vertical axis. The circles represent the position that was taken as
the foil rear edge (side away from x-ray drive). (20-03-0895-2047pb01)
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1.3–2.9 ns. In Fig. 12(a), the drive TR(t) shows a ~90-eV
foot for the first 1.5 ns, an increase to a peak of 190 eV
at 3 ns, and a decay to ~100 eV at 5 ns. The resulting
ablation pressure in the CH(Br) foil (Fig. 12b) shows a
3–5 Mbar foot and a peak of 28 Mbar at 3 ns, i.e., at the
same time as the peak in TR. [This is also the time of
peak acceleration and peak ablation velocity (Fig. 11).]
The peak density of the foil [Fig. 12(c)] is generated
just behind the strongest shock, reaching 6.5 g/cm3 or
a compression of 5.2 at 2.6 ns, when the second shock
breaks out of the back of the foil and is at maximum
strength. (This is also the time of minimum L, shown in
the inset in Fig. 11.) The Te(z) profile at 1.3 ns [Fig. 12(d)]
shows a sharp increase at z = –20 µm because of the pas-
sage of the first shock. Notice, however, that a low level
of heating precedes the first shock (z > –20 µm). This
“preheat” results from the deep penetration of the hard
component (hν > 1.4 keV) of the drive spectrum. By 2.5 ns,
the second shock has overtaken the first, and the sharp
features in Te(z) are washed out. The pressure profiles
[Fig. 12(e)] convey a similar picture. During the interval
1.3–2.1 ns, the sharp rise in pressure to 4 Mbar due to
the first shock is readily apparent. At 2.5 ns, the second
shock has overtaken the first, increasing the pressure to
20 Mbar, and at 2.9 ns the pressure reaches its maximum
of 28 Mbar. Figure 12(f) shows the effect on the foil 
compression of this staged two-shock drive. The com-
pression at 1.3 ns just behind the first shock increases
the foil density from 1.26 to 3.3 g/cm3. By the time the
second shock has overtaken the first at 2.5 ns, the peak

density has reached 6.4 g/cm3, corresponding to a 
compression of 5. This is greater than the maximum
possible compression of 4 for a single strong shock (in
the ideal-gas limit). The staging of multiple shocks
allows a higher compression by maintaining the foil on
a lower adiabat.

We illustrate the lower adiabat achievable with this
shaped drive by characterizing an adiabat with the
ratio α = P/PFD of pressure at peak density to that of a
Fermi-degenerate gas at the same density (which rep-
resents the lowest possible internal energy). For PFD,
we use the pressure at zero temperature for the EOS of
the foil. For the low-adiabat drive shown in Fig. 12, we
have α ≈ 2; for a 1-ns square drive at the same laser
energy13 we have α ≈ 9, a factor of 4.5 higher. Note that
the EOS for a real material differs significantly from
that of an ideal Fermi fluid for densities only a few
times solid density. The value of the parameter α
defined above does not uniquely characterize an isen-
trope but changes with density along one. The value of
α goes to infinity at solid density because PFD → 0. The
value of α does, however, approach a constant along
an isentrope in the limit ρ → ∞. This asymptotic limit
of α is about 1.25 for our low-adiabat drive, but it is 2.3
for a 1-ns square drive. Thus, if the foil driven with the
shaped pulse were to be compressed to high density
without introducing additional entropy, as in a capsule
implosion, its compression would be close to that
expected in the degenerate limit. 

FIGURE 12. Various repre-
sentations of the 16.4-kJ drive
corresponding to results
shown in Fig. 11 from 1-D
simulations to illustrate the
effect of pulse shaping. 
(a) Laser power PL and radi-
ation temperature TR vs
time. (b) Ablation pressure
(defined as the peak pressure
in the simulation) vs time.
(c) Peak density vs time.
(d)–(f) Spatial profiles of (d)
electron temperature Te, 
(e) pressure in the foil, and
(f) foil density at 1.3, 1.7, 2.1,
2.5, and 2.9 ns, spanning the
foot through the peak of the
drive. The 0-µm position
corresponds to the initial
position of the back edge of
the foil (the side away from
the drive). The drive is inci-
dent from the left (negative)
side. (20-03-0794-2831pb04)
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Single-Mode Experiments
Figure 13 shows the data from a single-mode face-

on experiment with a λ = 100 µm, η0 = 2.4 µm initial
perturbation on a 48 µm thick CH(Br) foil.37 Figure 13(a)
shows the “raw” image; Fig. 13(b) shows profiles of
modulations in optical depth ∆OD ≈ –lnE at early, 
intermediate, and late times. The initial perturbation
amplitude was large, and we observe clear sinusoidal
contrast (∆OD) even at the earliest time, 0.2 ns. At 2.2 ns,
the contrast is slightly greater and still sinusoidal, indi-
cating that the growth is still in the linear regime. At
4.2 ns, the shape of the perturbation has deviated sub-
stantially from sinusoidal, forming sharp spikes and
bubbles of high and low OD, respectively; the pertur-
bation has entered the nonlinear regime. The transition
from the linear to nonlinear regime is particularly clear
in Fourier space; Fig. 13(c) shows the real components
of the Fourier transform for the three ∆OD profiles. At
0.2 ns, only the η1 fundamental mode (first harmonic)
exists, indicating a purely sinusoidal perturbation. At
2.2 ns, η1 has grown slightly but is still the only com-
ponent, indicating a purely sinusoidal shape and linear
regime. At 4.2 ns, a whole spectrum of higher Fourier
harmonics—up to the fifth—is observed, corresponding to
the bubble-and-spike shape of the top lineout in Fig. 13b.
The perturbation is fully into the nonlinear regime.

Figure 14 shows the results of our λ-scaling experi-
ments with single-mode CH(Br) foils. The data points
represent the observations for the fundamental and the
second harmonic. The error bars represent the standard
deviation of the ensemble formed by treating each

individual period of the perturbations as independent
data. The solid curves are the corresponding 2-D
LASNEX44 simulations. The λ = 100 µm data shown in
Fig. 14(a) is the full time evolution of the results shown
at three particular times in Fig. 13. The perturbation
growth evolves through three stages. Before shock
breakout (t < 2.5 ns), the perturbation is growing only
slowly because of the rippled shock dynamics.21,22 For
a brief period after shock breakout (2.5 ns ≤ t ≤ 3.2 ns)
the perturbation is growing strongly because of the RT
instability in the linear regime. Late in time (t > 3.2 ns),
the perturbation “saturates.” The evolution has
entered the nonlinear regime, the second harmonic
appears, and the observed contrast rolls over. The
growth factor G, defined as the ratio of peak to initial
contrast, was small here—G = 4. A similar situation
occurs for λ = 70 µm, η0 = 2.4 µm [Fig. 14(b)]. Here, the
overall growth was slightly greater, G = 6, reflecting
the higher growth rate. For λ = 50 µm, η0 = 0.4 µm 
[Fig. 14(c)], the situation is qualitatively different.
Because the initial amplitude is small, the perturbation
evolution remains primarily in the linear regime,
achieving the higher growth G = 20. Figure 14(d)
shows the results for λ = 30 µm, η0 = 1.5 µm. Because
of the low instrumental MTF at λ = 30 µm (see Fig. 4),
the contrast remains low and no higher harmonics are
observed. The observed growth factor for the fundamen-
tal mode was G = 7. Table 1 lists the key parameters for
these experiments, including observed and simulated
growth factors.

The solid curves in Fig. 14 represent the corresponding
results from 2-D LASNEX simulations, after convolution

FIGURE 13. Various representations for single-mode face-on data for a λ = 100 µm, η0 = 2.4 µm perturbation imposed on a 48-µm-thick
CH(Br) foil. (a) The “raw” streaked image is shown as film density. The film response is removed using a calibrated exposure across a preci-
sion P20 optical density wedge. (b) Profiles of ∆(optical depth) ≈ –∆lnE at 0.2, 2.2, and 4.2 ns. (c) Real components of the Fourier transforms for
the profiles in (b). At late time, the perturbation enters the nonlinear regime, and up to the fifth harmonic of the perturbation Fourier compo-
sition is observed.     (20-03-0394-0748pb02)
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of the simulated image exposure with the instrumental
resolution function [Eq. (11)]. (Our modeling is discussed
in detail in Ref. 45.) Qualitatively, the simulations agree
quite well with the data. There is modest growth dur-

ing the shock transit phase, strong growth after shock
breakout, and then saturation with the appearance of
the second harmonic, indicating entry into the nonlin-
ear regime.

FIGURE 14. Results
from single-mode, 
λ-scaling series for
various values of λ and
η0. Data points repre-
sent first harmonic
(fundamental mode)
and second harmonic
Fourier coefficients of
lnE. Solid curves are
corresponding results
from 2-D LASNEX
simulations. (a) Shows
full time dependence
for data of Fig. 13. All
shots except that in (c)
used the “top” sector
of the 22× and a Rh
backlighter;  in (c), the
west sector was used,
and a Mo backlighter
was used for slightly
improved contrast.
(20-03-0394-1063pb02)

0
0

0.2

0.4

0.6

0

0.2

0.4

0.6

1 2 4 530 1 2 4 53
t (ns) t (ns)

Fo
ur

ie
r 

co
ef

fi
ci

en
ts

Fo
ur

ie
r 

co
ef

fi
ci

en
ts

0

0.2

0.4

0.6

0

0.2

0.4

0.6

λ = 30 µm

η0 

= 1.5 µm

λ = 70 µm

η0 = 2.4 µm

λ = 100 µm

η0 

= 2.4 µm

λ = 50 µm

η0 

= 0.4 µm
(c) Foil 57 µm thick

(b) Foil 50 µm thick

(d) Foil 53 µm thick

2-D LASNEX

Data, fundamental

2nd harmonic 

(a) CH (Br) foil 48 µm thick

FIGURE 15. Isodensity contour plots from 2-D simulations, in 1-ns steps, for perturbation growth from (a–d) λ = 50 µm, η0 = 0.4 µm and (e–g)
λ = 70 µm, η0 = 2.4 µm, corresponding to the results shown in Figs. 14(c) and 14(b), respectively. The contours correspond to equal density
steps and span densities of (a) 0.2177–3.265, (b) 0.4837–7.256, (c) 0.3389–5.084, (d) 0.1548–2.322, (e) 0.2287–3.431, (f) 0.4976–7.464, and 
(g) 0.5786–8.679 g/cm3. (20-03-0894-3227pb02)

60

40

20

0

(a) λ = 50 µm, η0 = 0.4 µm

t = 1.5 ns

40

20

0

(e) λ = 70 µm, η0 = 2.4 µm

t = 1.5 ns
40

20

–20

0

(f)

t = 2.5 ns

–160

–140

–180

–200

(d)

t = 4.5 ns

–20

40

20

0

(b)

t = 2.5 ns

–60

–40

–20

–80

0 20 40 60

(c)

t = 3.5 ns

Position (µm)

Po
si

ti
on

 (µ
m

)

–40

–60

–100

–80

(g)

t = 3.5 ns

0 20 40 60
Position (µm)

0 20 40 60
Position (µm)

Po
si

ti
on

 (µ
m

)



243

PLANAR AND CYLINDRICAL RAYLEIGH–TAYLOR EXPERIMENTS ON NOVA (HEP2)

UCRL-LR-105821-95-4

This basic behavior can be understood in terms of
the simple linear and perturbation theories outlined in
Eqs. (2, 3, 5). In the linear regime, RT growth is exponen-
tial. For η/λ > 0.1, the evolution enters the nonlinear
regime, higher harmonics appear, and at third order,
the growth in the fundamental mode is reduced. The
late-time rollover in the simulations (and presumably
in the data), is partially an instrumental artifact, how-
ever. Mass is being concentrated in long, narrow spikes
in the nonlinear phase, as illustrated in Fig. 15 with
isodensity contour plots from the simulations for λ = 50
and 70 µm. For example, at t = 3.5 ns for λ = 70 µm
[Fig. 15(g)], 50% of the highest density contours lie
within a 10-µm region at the center of the spike, which
is difficult to resolve with the 10–15-µm resolution of
the imaging instrument used (see Fig. 4). The observed
contrast is therefore decreasing after t = 3.5 ns. Notice
that there is much less concentration of material in the
spike at 3.5 ns for λ = 50 µm [Fig. 15(c)]. For this case,
spatial resolution does not become an issue until very
late (t ≈ 4.5 ns). For completeness, Fig. 16 shows the
simulations before and after convolution with the
instrument resolution function. The contrast is greater
before inclusion of the MTF, the difference being great-
est for the shortest wavelengths.

The simulations systematically predict slightly more
growth than is observed (Fig. 14). The seeds of this
discrepancy occur early—by 1.5 ns for the λ = 100 and
70-µm foils, well before the shock has broken out—so
the disagreement occurs during the shock transit phase.
We consider possible causes for this discrepancy in
Fig. 17, using the λ = 70 µm experiment as a test case.

Possible uncertainties in the drive TR(t) could arise
from uncertainties in the albedo of the Au hohlraum
wall early in time and from stagnation of Au plasma
on the hohlraum axis late in time. To assess the sensi-
tivity of perturbation growth to uncertainties in the
drive, we compare in Fig. 17(a) the results of simula-
tions in which the foot of the drive was 10 eV higher
and the peak 10 eV lower than the nominal drive. This
variation in the drive produces very little variation in
the predicted overall growth for λ = 70 µm.

Different EOS models can lead to different predicted
foil compression, which affects the RM-like growth
during shock transit. In Fig. 17(b) we compare the
effect of using a tabular EOS library with that of using
an in-line QEOS model.46 The QEOS model generates
a slightly stiffer EOS, which leads to less foil compres-
sion and hence to ~15% less perturbation growth.

There is also uncertainty in the exact magnitude of
preheat in the drive spectrum early in time. In Fig. 17(c)
we assess the sensitivity of perturbation growth to pre-
heat by comparing simulations with a nominal drive
spectrum and with a “high preheat” drive, in which
the drive spectrum above hν = 1.4 keV is increased by
a factor of 10 for the first 2 ns, while keeping the total

FIGURE 16. Effect of instrument resolution on the results from the
simulations. Black curves in (a)–(d), which include the effects of
instrumental MTF, are reproduced from Fig. 14. Gray curves represent
the simulation results before inclusion of MTF. (20-03-0394-0745pb03)
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to (a) drive, (b) EOS, (c) preheat, and (d) MTF. Data and black curves are
reproduced from Fig. 14(b). (a) The light gray curve corresponds to a
simulation in which the radiation temperature in the foot of the drive was
increased by 10 eV; the dark gray curve represents a simulation in which
the peak of the drive was reduced by 10 eV. (b) The nominal simulation
(black) uses a tabular EOS library. The gray curve uses an in-line model
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corresponds to a simulation in which the preheat in the drive was arti-
ficially increased: during the first 2 ns (the foot), the drive for hν ≥ 1.4 keV
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decreased to maintain the same total energy. (d) The gray curve corre-
sponds to post-processing the simulation with a resolution function
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drive power constant. Enhancement of the preheat sig-
nificantly reduces perturbation growth.

We also illustrate the sensitivity of observed growth
to uncertainties in the MTF. Decreasing the MTF by
15%, the maximum reduction consistent with the data
shown in Fig. 4(a), decreases the predicted growth by
15%, as shown in Fig. 17(d).

To summarize, the simulations slightly but system-
atically overpredict perturbation growth during the
shock transit phase. A possible cause is higher preheat
in the foot of the drive, but a combination of stiffer
EOS and degraded MTF may also be involved.

We have also done single-mode 2-D experiments
aimed at measuring large RT growth factors.14 These
experiments differed from those described above only
in the use of fluorosilicone (SiOC4H7F3, or “FS”) as the
foil material. We used FS because its admixture of
opacities shields the foil from x-ray preheat, keeping
the foil on a lower adiabat. The density gradient at the
ablation front is therefore steeper, and the ablation
velocity is lower, leading to higher RT growth factors.

We did these experiments in an amplitude-scaling series,
starting with large amplitude to see the initial contrast
easily. In this case, however, the RT evolution quickly
enters the nonlinear regime, higher harmonics are formed,
the perturbation takes on the classic bubble-and-spike
shape, and the growth slows sharply, ultimately
changing from exponential to linear. We then shot an
intermediate-amplitude target, which entered the non-
linear regime only towards the end of the acceleration.
Finally, to maximize the observed growth, we used a
very-small-amplitude perturbation, so that the foil
remained in the linear regime throughout the accelera-
tion. Figure 18 shows the results. For the smallest
amplitude perturbation, a growth factor of 75 was
observed in the fundamental mode. The peak-to-valley
amplitude grew by a factor of 80 (that is, 4.4 e-foldings
of growth), in agreement with the simulations.

To better illustrate the differences between the evo-
lution of these three targets, we use the simulations to
show in Fig. 19 the actual shape of the perturbations at
peak growth. The large-η0 foil [Fig. 19(a)] shows the
classic bubble-and-spike shape of the nonlinear RT

FIGURE 18. Amplitude (η0) scaling results for three fluorosilicone
(FS) foils. Perturbations were λ = 50 µm, η0 = 0.16, 0.8, and 4.5 µm; the
smallest-η0 perturbation yielded the highest growth factor (G = 75).
(20-03-1293-4395pb01)
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regime; the small-η0 foil [Fig. 19(c)] still looks largely
sinusoidal, indicating linear RT evolution; the interme-
diate-η0 foil [Fig. 19(b)] is midway in between.

The transition to the nonlinear regime can be illustrated
qualitatively with third-order perturbation theory.14,23

We compare the results from the LASNEX simulation
for the intermediate-η0 foil (η0 = 0.8 µm) with those
obtained from perturbation theory [Eq. (5)]. Amplitudes
in areal density ρR are converted to spatial amplitude
by dividing by a characteristic density. Figure 20 shows
the results. Third-order perturbation theory predicts
the entry into the nonlinear regime very well.

The quantity of most interest in RT instability stud-
ies is the growth rate γ in Eq. (2), which is often
parametrized as in Eq. (3) in terms of foil acceleration
g, density ρ, and density gradient scalelength L.
Unfortunately, because of the nature of our low-adiabat
drive, the foil g, ρ, and L are not constant, as shown in
Figs. 11 and 12. Hence, our RT growth cannot be char-
acterized in terms of a single value of γ over the full
duration of the foil acceleration. Nevertheless, from
linear-regime simulations for λ = 50 µm [Figs. 21(b),
21(c)], we show the dispersion curves in Fig. 21(d) for
CH(Br) and FS, using parameters characteristic of the
foils at t = 3.0 ns. Even though the exact quantitative
form of Eq. (3) for indirect drive is not settled, the

equation appears qualitatively to describe the effect of
stabilization at the ablation front. This has recently been
demonstrated conclusively by comparing RT growth at
the ablation front with that at an embedded interface,
away from the ablation front, for this same drive and
ablator material. At the ablation front, no growth was
observed for wavelengths shorter than 30 µm, whereas
at the embedded interface, strong growth down to
wavelengths as short as 10 µm was observed.47

Earlier experiments were done with a 1-ns drive
pulse shape, using FS and CH foils.13 Figure 22 shows
the results. This drive puts the foils on a much higher
adiabat; the duration of the acceleration was short, and
the growth was predominantly due to the rippled shock
dynamics. Growth factors were G ≈ 2.5 and G = 1.5 for
the FS and CH foils, respectively.

All of our single-mode 2-D experiments can be qual-
itatively understood by the density profiles in Fig. 23,
where we have carried out 1-D LASNEX simulations
with the shaped drive, changing only the foil material.
The FS foil remains on the lowest adiabat, has the
steepest density gradient at the ablation front, and (as
we saw above) exhibits the largest RT growth factors.
The CH foil is at the opposite extreme. With no opacity
shield against the hard x rays in the drive, the CH foil
jumps to a very high adiabat, the density gradient at

FIGURE 21. Results for
intermediate-η0 foil
(from Fig. 18): (a) raw
data, (b) Fourier coeffi-
cient of fundamental
mode vs time. (c) As in
(b), but for a CH(Br)
foil (from Fig. 14c). 
(d) Dispersion curve for
FS and CH(Br) with 
β = 2.5: for FS, L = 1.6 µm,
va = 3.2 µm/ns; for
CH(Br), L = 4.0 µm, 
va = 3.9 µm/ns.
(20-03-1293-4398pb01)
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the ablation front has only a very gentle slope, the
ablation velocity is very high, the RT growth is practi-
cally zero, and the foil burns through quickly. The
CH(Br) foil falls between these two extremes.

Two-Mode Experiments
We next turn to the two-mode experiments.37,48

Figure 24(a) shows the two-mode perturbations we
investigated; the upper side of each curve corresponds
to the foil. Figure 24(a) shows a large-amplitude two-
mode perturbation given by λ2 = 75 µm and λ3 = 50 µm,
with η2 = η3 = 2 µm.

Characterization of the initial perturbations is critical
for proper interpretation of the RT growth. The initial
perturbations are characterized by three independent
techniques—interferometry, contact profilometry, and
x-ray radiography—and are accurate to 10% or better.
Figure 25 shows examples of characterization by pro-
filometry and radiography for the two-mode foils (and
for the eight-mode foils of the next section, “Eight-Mode
Experiments”). The agreement between the two tech-
niques is very good except at the shortest wavelengths
(λ ≤ 25 µm) because of the finite resolution of our
radiography setup. We use the ηn from contact pro-
filometry as the most accurate initial amplitudes.

Figure 26 shows the results for the large-amplitude
two-mode foil shown in Fig. 24(a). Figure 26(a) shows
the raw image, and Fig. 26(b) shows a profile of lnE at
2.7 ns aligned relative to the mold, showing how the
phase of the data is established. Figure 26(c) illustrates
the analysis technique with a profile of lnE at 3.3 ns. To
remove the long-range structure arising from the back-
lighter, we fit a low-order polynomial to the profile of
lnE, shown by the gray curve. The lower solid curve in

Fig. 26(c) shows the lnE profile after having subtracted
the fit to the backlighter structure. The vertical dotted
lines represent the boundaries for the Fourier analysis.
The histogram in Fig. 26(d) shows the real component
of the Fourier transform of lnE at 3.3 ns. Because of the
cosine symmetry of the perturbation, the imaginary
component (not shown) is identically zero except for
random noise.

The Fourier modes are enumerated as harmonics of
the longest repeating pattern (150 µm). Hence, the two
pre-existing modes are k2 (λ = 75 µm) and k3 (λ = 50 µm).
Because the initial amplitudes are large, the perturbation

FIGURE 23. Density profiles from 1-D LASNEX simulations for FS,
CH(Br), and CH, assuming the same low-adiabat drive for each.
(20-03-1293-4401pb01)
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FIGURE 24. Multimode perturbation patterns investigated. (a) Two-mode perturbation: curvescorrespond to λ2 = 75 µm, η2 = 1.8 µm and 
λ3 = 50 µm, η3 = 1.8 µm. Their superposition represents the actual perturbation. The foil corresponds to the upper side of the curve. (b) Eight-
mode perturbation corresponds to the sum of wavelengths λn = (180 µm)/n, n = 1–8; Table 1 gives corresponding amplitudes.
(20-03-0394-0741pb03)
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quickly evolves into the nonlinear regime with the
appearance at 3.3 ns of the second harmonic of k2,
namely, 2k2. We also observe very distinct k1 = k3 – k2
and k5 = k3 + k2 coupled modes corresponding to λ = 150
and 30 µm, respectively. Notably absent is the second
harmonic of k3, namely, 2k3. This is because 3k2, the
third harmonic of k2, has the same magnitude as 2k3
but the opposite sign, leading to a cancellation.

The results shown in Fig. 26(d) are rather insensitive
to the exact functional form used in fitting the back-
ground. The smooth gray curve shown in Fig. 26(c)
corresponds to a fifth-order polynomial fit. If we had
chosen a second-order polynomial to fit the background,
the k1 term would have been 5% larger, and the other
modes would have changed by ~1%. With no back-
ground subtraction at all, the k1 mode would have
been only 20% different, and the other modes would
have varied by ~5% or less. This is illustrated by show-
ing the Fourier composition of the background itself.
The gray curve in Fig. 26(d) corresponds to the Fourier
transform of the gray curve in Fig. 26(c). Thus there is
little sensitivity to the exact details of how we treat the
backlighter background subtraction.

It is instructive to view these nonlinear mode coupling
effects within the context of perturbation theory.26 We

consider here only a qualitative application for the
coupling from two pre-existing modes k2 and k3 using
Eq. (8) from the Introduction, namely,

(8)

where        represents the spatial amplitude of mode kn
had the growth been entirely in the linear regime.
Notice that             has the same sign as the product 

, whereas              has the opposite sign, in agree-
ment with the experimental observation shown in 
Fig. 26(d). If the boundaries of the Fourier transform
are shifted by 75 µm (that is, by half of the fundamental
n = 1 period), the k2 and k3 modes have opposite signs
(not shown). The k3 – k2 mode is then negative, and the
k3 + k2 mode is positive, again in agreement with Eq. (8).
Qualitatively at least, the observation of the k3 ± k2
coupled terms can be understood from second-order
perturbation theory. The modes are too large already
by shock breakout to apply second-order theory quan-
titatively, however.

Figure 27 shows the full time dependence of the
two-mode data shown in Fig. 26. The plotting symbols
represent the data, which again correspond to the real

FIGURE 26. Various
representations for the
large-amplitude two-
mode data. (a) Raw
streaked image. (b) Late-
time (2.7 ns) profile of
lnE and initial pertur-
bation on the mold,
corresponding to the
superposition of a 
λ = 75 µm and λ = 50 µm,
η0 = 1.8 µm perturbation.
Data are aligned relative
to the mold, showing
how the perturbation
phase is established. 
(c) Background-sub-
traction technique,
illustrated on a late-time
(3.3 ns) profile of lnE:
“raw” profile, polyno-
mial fit, and result after
subtracting background.
Vertical dotted lines
represent boundaries
for Fourier analysis. (d)
Real component of
Fourier transform of
background-subtracted
profile in (c), and Fourier
transform of back-
ground itself.
(20-03-0394-0746pb02)
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component of the Fourier transform of lnE. Because of
symmetry, the imaginary component of the Fourier
transform should be zero, and we take its value as a
measure of the error for each point. The k3 ± k2 coupled
terms are not observed until after about t = 2.5 ns, after
the perturbation has entered the nonlinear regime. The
black curves in Fig. 27 are the corresponding results
from 2-D LASNEX simulations, after convolution of
the simulated image exposure with the instrumental
spatial resolution function [Eq. (11)]. The gray curves
in Fig. 27(a) correspond to simulations of the evolution
of each mode had it been the only mode initially pre-
sent. The departure of the black curves from the gray
curves for t ≥ 3 ns coincides with the growth of the
coupled terms, as shown in Fig. 27(b). The Fourier
composition of the perturbation is redistributed into a
broader spectrum because of the k3 ± k2 mode cou-
pling. This corresponds in physical space to a change
of shape: mode coupling makes the bubbles broader
and flatter and the spikes narrower. This is illustrated
explicitly in the next section.

Eight-Mode Experiments
Figure 24(b) shows a small-amplitude eight-mode

perturbation given by λn = (180 µm)/n. The individual
amplitudes ηn (given in Table 1) are about a factor of 10
smaller than those for the two-mode foil. Figure 28(a)
shows the raw image of the experimental shot, and 
Fig. 28(b) gives a late-time profile of lnE aligned relative
to the mold, showing how the phase of the data is
established.37,48 The vertical dashed lines indicate the
boundaries for the Fourier analysis. The black histograms
in Figs. 28(c) and 28(d) show the real component of the
Fourier transform at an early time (3.2 ns) and at late
time (4.4 ns). Because of the cosine symmetry, the
imaginary component (shown by the gray histograms)

oscillates around the baseline as random background
and serves as an estimate of the error. Early in time in
the linear regime [Fig. 28(c)], only the pre-existing modes
grow, in accordance with their initial amplitudes and
growth rates. The k3 mode (λ = 60 µm) dominates. Late
in time [Fig. 28(d)], the perturbation has entered the
nonlinear regime and the modes no longer grow
independently. The k3 mode no longer dominates, its
magnitude having been reduced by k3 – k2 mode cou-
pling to drive up the k1 mode. This causes the k1 term
to reverse phase; the initial sign of the k1 mode was
negative, as given in Table 1.

Figure 29 shows the full time evolution of the eight-
mode data. The plotting symbols correspond to the
real component of the Fourier transform of the data, and
the error bars correspond to the imaginary component.
The black curves represent the eight-mode LASNEX
simulation after convolving lnE with the spatial resolu-
tion function [Eq. (11)]; the qualitative agreement with
the data is good. The light gray curves represent the
single-mode simulations, in which it is assumed that
each mode existed alone. As a result of mode coupling,
modes k2 through k5 grow less than they would have
alone. Growth reduction is least for mode k4, which
has the largest amplitude at the time of saturation. The
presence of multiple modes causes nonlinearity to occur
earlier than if the modes had existed alone.

Modes k1, k6, and k7 reverse phase and grow with the
opposite sign. These modes show most prominently
the effects of coupling from the dominant modes, k2,
k3, and k4. The dark gray curves show the amplitudes
predicted for these modes from second-order theory,
described in more detail below. The phase reversal for
mode k1, for example, can be understood from Eq. (8)
and considering only the dominant modes k2, k3, and
k4. Both the k3 – k2 and k4 – k3 coupled terms are posi-
tive, tending to cause a phase reversal in the growth of

FIGURE 27. Full time dependence for two-mode data of Fig. 26. (a) Results for the λ = 75 µm component of the pre-existing perturbation and
for k3 (the λ = 50 µm component). (b) The k3 + k2, λ = 30 µm and k3 – k2, λ = 150 µm coupled terms and corresponding 2-D LASNEX two-mode
and single-mode results. (20-03-0394-0747pb03)
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the k1 mode (which was initially negative), as observed.
Similarly, the phase reversals of modes k6 and k7 can also
be understood from Eq. (8), considering ki + kj coupling
from the dominant modes k2, k3, and k4. Figure 29(d) also
shows (dashed curve) the result for mode k4 of an eight-
mode simulation with enhanced preheat in the drive
(factor of 10 increase in drive spectrum for hν > 1.4 keV
and t < 2 ns, as discussed in the earlier section “Single-
Mode Experiments”). As in Fig. 17(c), the enhanced
preheat reduces the perturbation growth considerably,
bringing the simulation into good agreement with the
data. This is true for all eight modes, although we
show only the enhanced-preheat result for mode k4.

The second-order perturbation model can be quanti-
tatively applied to the eight-mode experiment26,37,48,49

using Eq. (A3) from the final section “Amplitude of
Coupled Modes,”

(A3)

by summing over the products of all pairs of modes
whose sum or difference equals the k of interest. The        

represent spatial amplitudes, which we define
from the LASNEX simulations by dividing the modu-
lations in areal density by the foil peak density, that is, 

(14)

We apply this model to our experiment as follows.
For each λn in the eight-mode foil, 2-D LASNEX simu-
lations are run for perturbations of very small initial
amplitude, ensuring that the RT evolution remains in
the linear regime. The             are then obtained by scaling
by the ratio of actual to the assumed initial amplitude.
This technique of generating the             automatically
includes the effects of the time-dependent acceleration,
compression, density gradient, and ablative stabiliza-
tion. The dark gray curves in Figs. 29(a), 29(f), and
29(g) show the results from this perturbation analysis
for t ≤ 3.7 ns. After this time, the central assumption of
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FIGURE 28. Eight-
mode data in various
representations. (a)
Raw streaked image.
(b) Late-time profile of
lnE, aligned with the
mold as in Fig. 26.
Vertical dashed curves
give boundaries used
in Fourier analysis. (c)
Real and imaginary
components of Fourier
transform of “early-
time” (3.2 ns) profile of
lnE ≈ –OD. The imagi-
nary component
(which should be zero
because of the cosine
symmetry) illustrates
the level of back-
ground noise and can
be used for an estimate
of the error. The domi-
nant k3 (λ = 60 µm)
mode is indicated. (d)
Same as (c) except at
late time (4.4 ns). The
dominant term is now
k4 (λ = 45 µm), and the
strength from the k2
and k3 terms has been
redistributed into the
k1 = k3 – k2 coupled
mode, as indicated.
(20-03-1293-4406pb02)
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the model (dominant modes not affected by the cou-
pling terms) is violated and the model is no longer
applicable. In each case, the phase reversals are well
described by second-order perturbation theory.

At late times (t ≥ 4 ns), the saturation of modes k2 and
k3 results from the redistribution of the Fourier compo-
nents because of mode coupling. In physical space, this
corresponds to a change in shape, as illustrated in Fig. 30
for the two-mode and eight-mode perturbations. The
black curves correspond to profiles of lnE taken from the
LASNEX simulations before inclusion of the instrument
spatial resolution function. The gray curves represent
the sum of the results from the single-mode simula-
tions. Comparing the gray and black curves, we see
that the shapes of the perturbations with and without
mode coupling differ. With mode coupling, the bubbles
are broader and flatter and the spikes are narrower. This
shape effect has been observed in other simulations,29

but to our knowledge this is the first experimental
observation of the effect in ablatively accelerated foils.

The results from our eight-mode experiment can also
be compared with results from a saturation model devel-
oped for a full continuum of initial modes.32 The basic
premise of this model is that a perturbation correspond-
ing to a full continuum of modes saturates when the
product kcharηchar is no longer small, that is, when

(15)

where ηchar and λchar are a characteristic spatial ampli-
tude and wavelength and ε1 is some number less than

unity. But ηchar can be approximated as the quadrature
sum of individual modes within a band ∆k centered
around kchar = 2π/λchar, namely,

(16)

where ∆k = ε2k for some ε2 < 1, L is the system size,
L/2π is the 2-D density of Fourier states, and Sk is a

FIGURE 29. Full time dependence for data shown in Fig. 28. (a)–(h) Growth of modes λn = (180 µm)/n,  n = 1–8, vs time. Solid circles repre-
sent data; black curves represent corresponding 2-D LASNEX simulations. Light gray curves represent simulations under the assumption that
each individual mode existed alone, and the dark gray curves for modes k1, k6, and k7 correspond to the results of a calculation using weakly
nonlinear, second-order perturbation theory. The dashed curve for mode k4 corresponds to a simulation with assumed enhanced preheat in
the foot of the drive. (20-03-0394-0749pb03)

t (ns)

Fo
u

ri
er

 c
oe

ff
ic

ie
n

ts

0

–0.1

0

0.1

–0.1

0

0.1

–0.1

0

0.1

–0.4

–0.2

0

–0.4

–0.2

0

1 2 3 4 5
t (ns)

0 1 2 3 4 5
t (ns)

0 1 2 3 4 5
t (ns)

0 1 2 3 4 5

LASNEX

2nd order

Data

0

0.1

0.2

–0.2

0

0.2

(a) k1 (λ = 180 µm) (b) k2 (λ = 90 µm) (c) k3 (λ = 60 µm)

(e) k5 (λ = 36 µm) (g) k7 (λ = 25.7 µm)(f) k6 (λ = 30 µm) (h) k8 (λ = 22.5 µm)

(d) k4 (λ = 45 µm)

–0.4

–0.2

0

No coupling
High preheat

FIGURE 30. Effect of mode coupling on perturbation shape. The
upper black curve represents the two-mode simulation at 3.6 ns, and
the upper gray curve corresponds to the sum of the simulations for
the two individual modes run alone. The lower curves are the same
only for the eight-mode perturbation at 3.8 ns. (20-03-0194-0106pb02)

Position (µm)

ln
 (E

)

2

0

–2

4

6

8

10

200 3000 100

2-mode, t = 3.6 ns

8-mode, t = 3.8 ns

η η
π

ε
πchar = ≈ ≈∑

















k

k
k kk

L
S k

L
S2

1 2
2

1 2

2
2

1 2

2 2∆

∆
/ / /

,

η ε λ
πε

char char
char

= =1
12

k
,



252

PLANAR AND CYLINDRICAL RAYLEIGH–TAYLOR EXPERIMENTS ON NOVA (HEP2)

UCRL-LR-105821-95-4

typical spatial amplitude of an individual mode within
∆k. Combining Eqs. (15) and (16) gives

(in 2-D), (17a)

(in 3-D), (17b)

where ε1 and ε2 have been combined into a single
parameter ν (set in Ref. 32 for the 2-D case to ν2D = 1.14),
and L represents here the longest wavelength in the
periodic perturbation, L = 180 µm. The result for 3-D
given in Eq. (17b) is derived the same way, but with
ε2k replaced by (ε2k)2, and the density of states factor
becomes (L/2π)2. The normalization ν2D = 1.14 was
arrived at by comparison with the classical (incom-
pressible) fluid RT experiments of Read and Youngs.50

The above saturation results, namely Eq. (17a) and (17b),
can be derived more elegantly as follows. A multimode
perturbation in a localized region of space can be thought
of as a wavepacket. Over a small but finite spectral
range, this wavepacket cannot be distinguished over
short distances from a single-mode at wave vector k.
We expect RT saturation to occur at roughly the same
amplitude in both cases (wavepacket vs single-mode),
which means that amplitudes at saturation of the indi-
vidual components of the wavepacket will be less than
the amplitude of the single mode. Based on the criterion
of Layzer for a single mode,25 saturation is expected to
occur when the spacial amplitude η reaches ~(0.6/k).
In the multimode case, an additional factor of λ/L
enters to account for the number of similar modes
about k that can contribute to the saturation of mode k.
Hence Sk ≈ λ/kL = 2π/k2L, as given by Eq. 17(b). We
apply this saturation model, namely Eq. 17(a), to our
eight-mode experiment by calculating with LASNEX
the growth of each mode kn in the linear regime until
its spatial amplitude defined by Eq. (14) exceeds the
Skn

given by Eq. (17). At this time we make a smooth
transition to bubble growth that is linear in time, corre-
sponding to a terminal bubble velocity equal to the
velocity at saturation. This transition to saturated growth
is accomplished with the logarithmic construction

(18)

where            represents the spatial amplitude had the
growth remained in the linear regime. The modes are
added in quadrature to produce the predicted root-
mean-square (rms) bubble amplitude. We compare this
with the rms bubble amplitude from the LASNEX
eight-mode simulation. Bubbles are defined in terms of
foil areal density ∫ρ dz (that is, the foil ρr) by consider-
ing only those perturbations leading to ρr < (ρr)av.
Figure 31 shows the result for the nominal ν2D = 1.14
and for values of ν2D a factor of 2 higher and lower

than 1.14. The result corresponding to ν2D = 0.57
agrees best with the LASNEX eight-mode simulation.
This is only a crude test of the model for ablatively
accelerated foils, because the density of Fourier modes
is low. Future work will involve 3-D experiments with
a near continuum of modes and larger growth factors
as a better test of this saturation model.

3-D Single-Mode Experiments
The nonlinear RT growth of a perturbation depends

upon its shape. Perturbations of the same magnitude
wavenumber k = (kx

2 + ky
2)1/2 can have different shape

and can therefore evolve differently in the nonlinear
regime while having the same linear-regime RT growth
rate. In this section we examine how the 3-D shape
affects the growth of single-mode perturbations on pla-
nar foils.51 The CH(Br) foils were made using a new
laser ablation technique to make molds in Kapton or
Mylar substrates.52 We prepared perturbed foils all with
the same magnitude wave vector k = (kx

2 + ky
2)1/2

and nominally the same amplitude. The “2-D” foil (1-D
wave vector k = kx) was a simple λ = 50 µm sinusoid
with initial amplitude η0 = 2.5 µm. One of the “3-D”
foils [2-D wave vector k = (kx, ky)] corresponded to a
“stretched” kx = 3ky perturbation, and the other was a
square kx = ky mode. The three foils were characterized
using  contact radiography [Fig. 32(a)–32(c)] and contact
profilometry. The radiographs were converted to spatial
amplitudes using a CH(Br) step wedge. Figure 32(d)–32(f)]
show corresponding images from Nova shots at 4.3 ns,
which is near peak growth. The gated x-ray pinhole
camera for these images was run at 8× magnification

FIGURE 31. Results of eight-mode LASNEX simulation and corre-
sponding results from multimode saturation theory. Black curve 
corresponds to the rms perturbation in areal density ∆∫ρ dz from the
eight-mode simulation, where we consider only the bubble amplitude.
Other curves correspond to results of the saturation model for normal-
izations [Eq. (17a)] of ν2D = 2.28, 1.14, and 0.57. (20-03-0194-0131pb02)
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with 10-µm pinholes and 150-µm Be filtering. The
backlighter was Sc at 4.3 keV.

Each image from the Nova shots [Fig. 32(d)–32(f)] is
converted to ln E ∝ –OD = –∫ρκ dz. Hence, modulations
in lnE correspond to modulations in foil areal density.
To visualize the 3-D RT evolution better, we focus
momentarily on the kx = ky mode. Figure 33(a) gives a
3-D surface perspective of the data shown in Fig. 32(f).
Figure 33(b) shows the corresponding simulation with
the new 3-D radiation–hydrodynamics code HYDRA.53

The height of these surfaces is proportional to –(areal
density), and crudely speaking, represents the boundary

between the hot, low-density ablated plasma and the
dense pusher material ahead of it.

In the reference frame of the accelerating ablation
front, one would see a broad, hot bubble of ablated
plasma rising up through the pusher and spikes of
dense pusher fluid falling essentially freely through
the ablated plasma. This canonical shape of the 3-D RT
instability can be understood from a simple buoyancy-
vs-drag equation,54,55

(19)

FIGURE 33. 3-D surface
perspective of the kx = ky
case from Fig. 32 as (a) mea-
sured on the Nova shot at
4.3 ns and (b) simulated
with the 3-D radiation–
hydrodynamics code
HYDRA.53 The height is
proportional to ln E.
(50-05-0595-1116pb01)

(a)

71 µm

y

x

ln E

(b)

71 µm

ρ ∂
∂

ρ ρ ρ1 1 2 1
2V

u
t

Vg c u S= ( )– – ,D

FIGURE 32. (a)–(c)
Contact radiographs of
foils identical to those
used in the 3-D single-
mode Nova experiments.
Perturbations correspond
to (a) 2-D λ = 50 µm, 
η0 = 2.5 µm; (b) 3-D 
kx = 3ky, λx = 53 µm, 
λy = 158 µm, η0 = 2.4 µm;
and (c) 3-D kx = ky, 
λx = λy = 71 µm, 
η0 = 2.7 µm. (d)–(f)
Corresponding images
from Nova shots at 4.3 ns.
(20-03-0595-1390pb01)
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where subscripts 1 and 2 refer to the dense pusher fluid
and low-density ablation plasma, respectively, V is the
volume of fluid pushed aside by the bubble passage, S
is the cross-sectional area of the bubble, and cD is the
drag coefficient. Equation (19) states that the net force
on the mass ρ1V of the heavy fluid equals the buoyancy
force minus drag. The bubble tip naturally acquires the
shape that minimizes the drag per unit mass, i.e., the
bubble evolves towards a shape that minimizes S/V,
which implies a spherical bubble tip shape, as observed.
This is entirely equivalent to the common interpretation

that for a spherical 3-D bubble the flow can carry mate-
rial away from the bubble tip on all sides, allowing it
to transit more easily into the spike regions.51,56 One can
also obtain from Eq. (19) the form of the terminal bubble
velocity of Eq. (7). When buoyancy is exactly balanced
by drag, one has (ρ1 – ρ2) Vg = cDρ1u2S. If we let V ∝ λ 3,
S ∝ λ 2, and ρ2 ≈ 0, we then have ρ1λ3g ∝ cDρ1u2λ2; this
yields u2 ∝ gλ, as in Eq. (7). Also note that if g = 0, as in
the Richtmyer–Meshkov instability (long after shock
passage), we obtain uRM ~ λ/t, as pointed out by Alon
et al.55 and as was recently observed.57

The images are Fourier analyzed, and the amplitudes
corresponding to the fundamental mode are extracted.
For an experimental demonstration of the effects of
dimensionality on perturbation growth, we conducted
shots for three targets (2-D λ = 50 µm, 3-D kx = ky and
kx = 3ky). The total laser energy for these shots was
similar, and the timing and filtering of the diagnostic
were identical. Figure 34(a) shows the results for the
evolution of the fundamental mode. The kx = ky square
3-D mode grows the most, the λ = 50 µm 2-D mode

FIGURE 34. (a) Results of the evolution of the fundamental mode
Fourier amplitude of lnE for the 3-D kx = ky, kx = 3ky, and 2-D λ = 50 µm
perturbations. Connecting lines are meant only to guide the eye. (b)
Predicted Fourier amplitude of lnE from 3-D HYDRA simulations for
the evolution of four perturbation shapes, all with the same wave
vector magnitude k = (kx

2 + ky
2)1/2, for somewhat different drive 

histories and foil thicknesses from those of (a). The most symmetric
(kx = ky) mode is predicted to grow the most, the 2-D λ = 50 µm mode
to grow the least, and the 3-D stretched cases fall in between, in agree-
ment with the experiments. (20-03-0595-1389pb01)

FIGURE 35. Typical 2-D images from surface-finish experiments
using CH(Br) foils with two surface finishes, (a) rough (σrms = 1.7 µm)
and (b) smooth (σrms = 10 nm). The diagnostic was a gated x-ray
framing camera filtered with 381 µm Be; foil was back-illuminated
with x rays generated by a ~500-µm-diam random phase plate
(RPP)-smoothed laser beam incident on a Sc backlighter disk.
(20-03-1293-4408pb01)
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grows the least, and the kx = 3ky stretched 3-D mode
falls in between.

Figure 34(b) shows results from HYDRA simulations
which were performed to help select parameters for
the experiments. The foil thicknesses and drive histories
in the experiments were somewhat different than those
used in these simulations. The perturbations, in order
of decreasing peak growth, correspond to kx = ky, kx = 2ky,

kx = 3ky, and 2-D λ = 50 µm. Our simulations clearly
show that the most symmetric perturbations grow the
most, as reported by others.23,56,58,59 This agrees
qualitatively with our experimental observations;
quantitative comparisons are under way.

Ultimately we are interested in the fully 3-D evolution
at the ablation front of a perturbation consisting of a full
continuum of modes. Recent progress has been made in
developing 3-D modeling capability.5,51,53,56,58–61 We
have therefore begun a series of surface-finish experi-
ments to compare the perturbation growth from a
randomly roughened surface with that from a smooth
surface. We generated the rough surface by sand blast-
ing a glass mold with 50-µm Al2O3 pellets. The typical
deviation from the average for the smooth foil is
σrms = 10 nm, whereas σrms = 1.7 µm for the rough foil.

Figure 35 shows gated images taken at 2.0, 3.2, and
4.4 ns when such foils were accelerated. Late in time,
the surface of the rough foil has evolved into large,
roughly hexagonal bubbles of transverse size ~100 µm.
Figure 36(a) shows this more quantitatively in
∆lnE ≈ –∆OD profiles. These horizontal lineouts repre-
sent the central region of each image shown in Fig. 35;
the late-time lineout contains the prominent central
bubble at 4.4 ns. Figure 36(b) shows similar profiles for
a standard smooth foil; there is no obvious perturbation
growth into bubbles and spikes. Figure 37 shows the

FIGURE 36. Corresponding ∆lnE lineouts from Fig. 35 for (a) rough
foil, (b) smooth foil. (20-03-0293-0379pb01)
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corresponding Fourier transforms. The smooth foil again
shows no significant growth. For the rough foil, the
growth late in time is dominated by harmonics n = 3–8,
corresponding to λ = 150–56 µm. This is reasonable,
because perturbations with λ > 150 µm grow too slowly,
and perturbations with λ < 56 µm are more strongly
ablatively stabilized [see Fig. 21(d)].

Late in time, the Fourier spectrum for the rough
surface is dominated by the fourth harmonic, with
peak amplitude η = 0.28. This fourth harmonic results
from the prominent 112-µm-diam bubble shown in the
center of the image at 4.4 ns in Figs. 35(a) and 36(a). We
use this amplitude to make a crude estimate of growth
factor in optical depth, GOD, for the dominant mode.
From the surface profile of a similar rough foil, we esti-
mate η0(λ = 100 µm) ≈ 0.3 µm. The initial contrast for a
CH(Br) foil with a λ = 100 µm, η0 = 5 µm pure sinusoidal
initial perturbation was measured on a separate shot
(using the same diagnostic, backlighter, and filtering)
to be ∆OD0 = 0.14. We therefore estimate the growth
factor for the dominant mode in Fig. 37(a) to be
GOD = η/η0 ≈ 0.28/[(0.14)(0.3 µm)/(5.0 µm)] = 33. This
is considerably less than expected in a typical implosion,
but it represents a first step towards experimentally
addressing the question of 3-D growth from a random
initial surface finish. An analysis based on 2-D LASNEX
simulations and Haan’s 3-D saturation theory 32 has
been done for this rough surface experiment. The
results, shown in Fig. 38, suggest that the multimode
RT evolution was just entering the saturation regime,
according to Haan’s criterion. We are therefore designing
a drive to produce a higher growth factor and having a
longer acceleration interval, to allow a more discrimi-
nating test of multimode saturation physics.

The RT Instability in Cylindrical
Implosions

The RT growth during ablative acceleration has been
measured in many direct- and indirect-drive experi-
ments. These measurements have verified the predicted
stabilizing effect of mass ablation and density gradients.
But few of these experiments have examined the role
of feedthrough or of the deceleration phase, during
which the growing perturbations may enhance thermal
losses from the “hot spot” or reduce the efficiency of
compressional work done by the shell on the fuel.
Qualitatively, RT growth on the inner surface during
deceleration differs from growth on the outer surface
during acceleration by the lack of ablative stabilization.
The RT growth at the inner surface is moderated, how-
ever, by the density gradient. In addition, convergent
effects are important during these three phases. During
ablative acceleration, convergence introduces a different
threshold for nonlinear effects because of a decrease of
perturbation wavelength in time,32 thin-shell effects,7,29,62

and a change in perturbation amplitude arising from
the combination of convergence and compressibility.63

Feedthrough is decreased because the pusher shell
thickens during convergence. Convergence effects are
magnified during deceleration.5,32,61,63

Current designs for indirectly driven ignition cap-
sules41 operate near the edge of present capabilities to
fabricate smooth surfaces. It is important to assess the
magnitude of feedthrough in ICF implosions if we are
to correctly model the relative roles of perturbations on
the outer and inner surfaces of capsules for these cap-
sule designs. The effect of convergence on feedthrough
is an integral part of the problem, so experiments in

FIGURE 38. Saturation
analysis based on 2-D
LASNEX simulations
and the Haan 3-D satu-
ration theory32 for the
rough surface foils,
shown in terms of 
(a) σrms vs time and 
(b) Fourier spectrum at
peak growth.
(20-03-1293-4501pb02)
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convergent geometry are desirable. Few experiments to
study convergent RT instability have been performed64

because of the difficulty of diagnosis. Perturbations and
mixing-layer widths are difficult to measure in spheri-
cal geometry because of the lack of a direct line of sight
and because of errors associated with Abel inversions in
spherical geometry near peak convergence. Although
perturbation growth can be indirectly inferred from
time-dependent x-ray spectral line ratios in spherical
implosions,18,19,65 the results depend on the details of
difficult atomic physics and radiative transport calcula-
tions. We have used an indirectly driven cylindrical
configuration to allow diagnostic access and superior
control of the shell’s inner surface during target fabrica-
tion, although questions arise concerning edge effects
and implosion symmetry. We chose a feedthrough
experiment to demonstrate that quantitative RT experi-
ments can be performed in cylindrical geometry and to
measure feedthrough in a radiation-driven target for
the first time.

Figure 39 shows the experiment geometry. The cylin-
drical polystyrene shell was mounted orthogonal to the
hohlraum axis, to allow a direct line of sight to the
diagnostics, to avoid interference with laser beams, and
to avoid radiation flow into the ends of the cylinder (as
may occur in a coaxial configuration). Eight 351-nm,
2.5-kJ, 2.2-ns Nova drive beams are pointed symmetri-
cally about the cylinder. A low-adiabat drive was used,
consisting of a low-power foot followed by a ramp to
higher power, with a peak-to-foot ratio of about 3. A
separate 528-nm, 2-ns beam was used to irradiate a 
2-mm-diam Ag disk to create an x-ray backlighter of
photon energy ~3–3.6 keV. An RPP66 was used to
smooth the beam intensity onto the Ag disk, and the

resultant laser spot was ~750 µm in diameter. The disk
was located ~3.5 mm away from the center of the cylin-
der and was oriented so that the disk normal bisected
the angle between the cylinder axis and the backlighter
laser direction. A 1-mil Be foil was placed between the
backlighter and cylinder to filter out soft x rays and to
keep reflected 2ω light from the backlighter from strik-
ing the inside of the cylinder. There should be no 2ω
unconverted light from the eight Nova drive beams
with a line of sight to the cylinder, so a Be shield on the
other side of the cylinder is unnecessary.

Figure 40 shows the polystyrene cylinder in detail.
The cylinder has an outer diameter of 630 µm, an inner
diameter of 430 µm, and length of 1800 µm. The outer
diameter is tapered toward the center of the cylinder,
allowing the central region of the cylinder to implode
before the ends and minimizing edge effects.
Perturbations were machined onto the outer surface of
the central 400-µm-long region of the cylinder in a
dodecagon shape (fundamental mode number m = 12).
(A sine wave perturbation would be preferable, because
it contains no harmonics, but a sine wave is much more
difficult to fabricate than a dodecagon.) A 4-µm-thick,
160-µm-long dichlorostyrene (C8H6Cl2) belt was placed
around the center of the cylindrical shell, flush with
the shell’s inner surface. The belt served as a marker
layer, because it is opaque to the x-ray backlighter,
whereas the polystyrene cylinder is relatively transpar-
ent. The time-resolved pinhole camera diagnostic
images the marker layer; late in time, it also images
some of the surrounding compressed material. The
marker layer is on the inner surface of the cylinder and
has no initial perturbations, so any perturbations
observed indicate feedthrough of the initial outer-sur-
face perturbations to the inner surface. The marker

FIGURE 39. Side and transverse views of experimental geometry for
the cylindrical implosion Rayleigh–Taylor experiment.
(20-03-0895-2048pb01)
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layer has a density close to that of the unchlorinated
polystyrene (1.4 g/cm3 vs 1.0 g/cm3); calculations
show that this slight density mismatch does not cause
significant RT growth. A 60-mg/cm3 microcellular tri-
acrylate foam (C15H20O6) is placed inside the shell to
provide a back-pressure as the cylinder implodes. The
foam has a cell size ~1–3 µm. The foam is shorter than
the cylinder to minimize opacity to the backlighter.
The cylinder is fabricated by coating the marker layer
on a mandrel, machining the marker layer to size, coat-
ing the other polymer layers onto the mandrel and
marker layer, machining the coatings, leaching the
mandrel out, inserting the cylinder inside the hohlraum,
and inserting the foam inside the cylinder. On each
end of the cylinder, a 400-µm-diam circular aperture
made of 25-µm-thick gold was placed concentric with
the cylinder axis. These apertures prevented any x rays
emitted by the walls of the cylinder from entering the
pinhole camera diagnostic, provided an alignment and
parallax diagnostic on the shot, and provided a center-
ing fiducial for each frame on the pinhole camera. The
fiducial is crucial for quantitative Fourier analysis of
the data.

The cylinder was viewed along its axis with a time-
resolved, gated x-ray pinhole camera (GXI).67 A 4 × 4
pinhole array with pinhole diameters of ~7 µm allowed
16 images spaced ~55 ps apart to be projected onto
four microchannel-plate strip lines with a magnification
of 12. The filters used were 12.7-µm Ti and 150-µm Be.
The Ti was chosen to block x rays with energies above
4.75 keV and to allow the silver L-shell backlighter
radiation through.

To determine the contrast ratio expected between
the tracer layer and the central foam region, a backlit
nonimplosion shot was taken with a 40-µm-thick piece
of chlorinated polystyrene on top of part of the foam.
The contrast in exposure was measured to be 16:1 after
a density-to-exposure correction of the film. A streaked
x-ray crystal (KAP) spectrometer viewed the Ag back-
lighter disk and provided the backlighter spectrum as
a function of time. Figure 41 shows a measured back-
lighter spectrum on an implosion shot. The opacity of
cold chlorinated polystyrene and the gold photocathode
GXI response are overlaid. The chlorinated polystyrene
absorbs virtually all the Ag L-shell radiation, and the
GXI detects most of the backlighter where there is no
chlorinated polystyrene. The transmission of 3.5-keV 
x rays through 100 µm of cold polystyrene is ~0.6.
Figure 42 shows the total 3ω laser power into the
hohlraum and the spectrally integrated x-ray backlighter
flux as a function of time. The GXI is timed to measure
during the peak x-ray backlighter fluence. The hohlraum
was viewed along its axis with the west axial x-ray
imager (WAX)68, another time-resolved pinhole cam-
era with a serpentine microchannel plate strip. This

was used to verify that there was no beam clipping on
the laser entrance holes.

One purpose of a narrow 160-µm tracer region is to
minimize the effect of misalignment on the pinhole
camera measurement of the interface location. For
example, a 1° tilt in the cylinder with respect to a point
on the GXI would result in a lateral spread of 2.8 µm in
an interface. Since the pinhole array also has a lateral
spread in location, there is parallax between images.
For a perfectly aligned cylinder, the four center pin-
holes have a parallax of 0.9°, the next eight surround-
ing pinholes have a parallax of 2°, and the four corner
pinholes have a parallax of 2.7°. The alignment of the
cylinder relative to the GXI, measured on a shot with
fiducial wires across the front and back faces of the
cylinder, was 0.4° ± 0.6°. Thus the lateral spread in an
image is primarily due to parallax.

FIGURE 42. The 3ω (λ = 351 nm) power of eight Nova laser beams
(left scale) and x-ray backlighter power (right scale). The x-ray
images are taken between 2 and 3 ns, near the peak of the back-
lighter emission. (20-03-1095-2285pb01)
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Figure 43 shows 12 frames from an implosion with
the initially perturbed surface described above. The 
m = 12 perturbation is clearly visible. The perturbation
amplitude grows in time, and the wavelength decreases
as the radius decreases. At t = 2.11 ns (first image), cal-
culations indicate that the ablation front has not burned
through to the marker layer, so the observed m = 12
feature is the result of feedthrough of the initial pertur-
bation to the marker layer. The tips of the dodecagon
have grown into spikes at the ablation front. Figure 44(a),
an image of an unperturbed cylindrical implosion
under identical conditions to a perturbed implosion
[Fig. 44(b)], shows no m = 12 perturbations. The absence
of any m = 12 feature in this case verifies that the initial
perturbations caused the observed feedthrough. (We
attribute the small bump at the upper left of the unper-
turbed shell to a target defect).

In the perturbed image [Fig. 44(b)], we identify a
contour r(θ) at the outer edge at about the 50% expo-
sure level and draw it in [Fig. 45(a)]. The contour can
then be fitted with a Fourier series according to the
usual prescription

where 

and 

The results of the fit are shown in Fig. 45(b) and the
Fourier composition is shown in Fig. 46, where the modal
amplitude                         is plotted vs mode number m.
The term a0 represents the average diameter of the con-
tour, and a1 and b1 represent the offsets of the center of
the contour from the axes of symmetry. The coefficients
depend on the choice of the center of the contour. We
examined several methods to choose the center of the
contour: a least-squares fit to a circle, a minimization of
a1 and b1, and a center based on the measurement of
the center of the defining aperture. Of these methods,
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FIGURE 43. A
sequence of gated 
x-ray images of the
cylindrical backlit
implosion from one
experiment (t = 0 corre-
sponds to the start of
the laser pulse). Shock
emission appears on
center at 2.30 ns. The
backlighter spatial
extent is limited by the
circular apertures at
each end of the cylin-
der, and the deviation
from circularity is a
measure of the effect 
of parallax.
(20-03-0895-2050pb01)
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only the latter proved reliable and resulted in mode
number conservation during the implosion. Figure 47
shows images of the perturbed implosion later in time.
One side of the target has imploded closer to the center
than the other side. This is probably due to a slight
manufacturing imperfection in the target, as if the
marker layer were thinner on one side than on the
other. The apertures also indicate, on each image, the
parallax due to the offset of each pinhole from the axis
of the cylindrical shell; the images can be corrected for
this effect.

At 2.11 ns, there are significant components at m = 1, 4,
8, and 12. Mode 1 exists because one side of the cylinder
implodes faster than the other. Mode 4 is expected
because of the discrete number of beams illuminating
the hohlraum. Mode 2 was minimized by the proper
choice of beam pointing. Mode 12 has an amplitude of 
η = 10 µm. Since the instrumental resolution is insuffi-
cient to distinguish between mode 12 and modes 11

and 13, it is reasonable to expect that the effective
amplitude of the perturbation at mode 12 is the
quadrature sum of modes 11, 12 and 13, resulting in an
amplitude of 12 µm. Other methods of analysis,
including curve fits to the functional form

and variations in the choice of a center, result in a mode-
12 amplitude of 9–11 µm; we assign the value 10 ± 2 µm
as the amplitude of mode 12. A Fourier analysis of a
dodecagon inscribed in a 260-µm-radius circle gives
amplitudes of 3.5, 0.85, and 0.34 µm for modes 12, 24,
and 36 respectively. Thus at t = 2.11 ns, the fundamen-
tal has grown by a factor of 2.9 ± 0.6 with respect to its
initial value.

To test the sensitivity of the analysis to the choice of
50% isodensity contour, we analyzed several images
with isodensity contours ranging from 40% to 60%.

FIGURE 45. (a) An
outer contour taken at
50% peak exposure,
superposed over the
initial x-ray image taken
at 2.11 ns. (b) Results of
a Fourier series fitted
to the contour shown
in (a). The horizontal
and vertical axes are
equal, each covering a
range of 300 µm.
(20-03-0895-2053pb02)
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target with no initial
perturbations and (b)
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The results were insensitive to choice of isodensity
contour. For isodensity values outside this range, the
background noise from the microchannel plate occa-
sionally affected the contour, with unphysical contours
appearing because of noise spikes.

For each image, we Fourier analyzed the contours
for the inner edge of the marker layer (the interface
between the marker layer and the TPX foam) and the
outer edge (the interface between the marker layer and
surrounding polystyrene cylinder). Figure 48 shows
the time dependence of a0/2, which represents the
average radius. The implosion trajectory is consistent
with a 195-eV peak drive temperature in a calculation
with the 1-D radiation–hydrodynamic code HYADES.69

The perturbation was initialized in its linear 
regime. At t = 0, the wavelength of mode m = 12 is
λ = 2πR/m = 136 µm, where R = 260 µm. The ampli-
tude of mode m = 12 is η0 = 3.50 µm initially, so that

η/λ = 0.026. At 2.11 ns, the radius of the shell is
R = 122 µm, so that λ = 2πR/m = 64 µm. The amplitude
of mode m = 12 is η = 10 µm, so η/λ = 0.16. The pertur-
bation at the marker layer has exceeded the nominal
threshold for nonlinearity η/λ ≈ 0.1 at 2.11 ns. 

Growth of perturbations on the marker layer result
both from shock imprinting and from feedthrough
from RT growth at the ablation front. Simple estimates
suggest that the latter dominates. To illustrate this, we
estimate the marker layer amplitude that would result
from shock imprinting alone. The shock is launched
from a rippled surface at the ablation front, and hence
is itself rippled. A rough estimate of the amplitude of
the ripple imparted to the marker layer upon passage
of the rippled shock is given by

Here ηm is the amplitude of the imprinted ripple on
the marker layer, η0 is the ablation front surface 

FIGURE 46. Fourier amplitudes vs mode number m for a 50% outer
contour of the gated x-ray image at t = 2.11 ns. The largest physically
significant amplitude corresponds to m = 12. (20-03-1095-2286pb01)
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perturbation initial amplitude, ∆Ro is the initial dis-
tance from the ablation front to the marker layer, λo is
the initial perturbation wavelength, up the particle
velocity behind the shock front, and vs the shock veloc-
ity. The factor η0(1–∆Ro/λo) is an estimate, based on
the shock oscillation data of Endo et al.,22 of the ampli-
tude of the shock-front ripple, assuming that it
reverses phase after having traveled a distance of λo.
Since ∆Ro ≈ 40 µm and λo ≈ 100 µm, the rippled shock
has not reversed phase by the time it reaches the
marker layer, but its amplitude is ~40% lower than η0.
Assuming that this marker layer perturbation then
grows linearly in time via the Richtmyer–Meshkov
instability, we write

where η12(t) is the amplitude of the fundamental mode
at time t, A* is the post-shock Atwood number, and 
∆t = t – ts, where ts = 0.4 ns is the time when the first
shock reaches the marker layer. Using reasonable esti-
mates for the various parameters in this equation, we
estimate that η12 (2.11 ns) ≈ 2.5 µm. Allowing for some
additional growth due to the higher up after the sec-
ond shock reaches the marker layer at 1.6 ns, we get
η12 (2.11 ns) ≈ 3 µm. The measured amplitude of 10 µm
at 2.11 ns is considerably larger, suggesting that feed-
through from RT growth at the ablation front is the
dominant source of the observed growth. 

During deceleration, the inner surface becomes RT
unstable and perturbations fed through to the inside
surface grow without ablative stabilization. At 2.72
and 2.80 ns (Fig. 43), visible spikes protrude into the
core. The spikes on the inner edge of the marker layer
correspond radially to bubbles on the outer surface,
such as can be seen in Fig. 43 at 2.30 ns and 2.47 ns.
This suggests that ablation-front bubble growth is the
dominant feed-through mechanism.

Summary
We have conducted an extensive series of experiments

and simulations to examine the growth of single modes
over a range of wavelengths and to examine the effect
of multiple modes on perturbation growth. For single
modes, the perturbation evolves before shock breakout
because of the rippled shock dynamics. After shock
breakout, the perturbations grow rapidly in the linear
regime and saturate in the nonlinear regime, with the
appearance of higher harmonics. In multimode foils,
the individual modes grow independently in the linear
regime. In the nonlinear regime, the modes become
coupled and ki ± kj terms are clearly observed, in agree-
ment with simulations and second-order perturbation
theory. Mode coupling redistributes the perturbation
in Fourier space, which in physical space corresponds
to a change in perturbation shape. The bubbles become

broader and flatter and the spikes narrower. In terms
of a continuum model, the individual modes of the 
2-D perturbation saturate when they exceed
Sk = ν2D/k3/2L1/2 in amplitude. The simulations sys-
tematically predict slightly more growth than is
observed. This could be caused by greater than
expected preheat in the foot of the drive, a stiffer EOS
for CH(Br), or a degraded instrumental MTF.

Single-mode experiments very clearly indicate the
differences between 2-D and 3-D perturbation shape.
Axisymmetric 3-D bubbles grow the largest in the non-
linear regime, consistent with a simple buoyancy-vs-drag
argument, third-order perturbation theory, and with
full 3-D radiation–hydrodynamics simulations. The
obvious next step is to measure the full multimode 3-D
perturbation evolution and to compare the results with
3-D simulations and with the predictions of Haan’s
saturation theory.

In radiation-driven cylindrical implosions, we have
observed the RT instability seeded by feedthrough from
the outer surface to the inner surface. The mode number
was conserved during the implosion. This proof-of-
principle cylindrical experiment shows the potential
for new studies of RT instability in convergent geometry.
Ablation-front growth and feedthrough were measured.
With higher resolution, studies of the stagnation phase
and inner surface breakup may be possible. 

Appendix: Amplitude of
Coupled Modes

Following Ref. 26, a solution to a second-order per-
turbation expansion of the 3-D hydrodynamic equations
for inviscid, incompressible fluids can be written as

(A1)

where                        and where superscript L designates
results in the linear regime. The time-independent part
of the kernel G(k, k2) is given by

(A2)

where k = (kx, ky) is the perturbation wave vector, 
is the unit vector, and γ(k), γ2, and γ’2 are the

linear growth rates for perturbations with wave vec-
tors k, k2, and , respectively. This weakly nonlinear
theory is valid only so long as the dominant modes are
not being changed significantly by the nonlinear terms.
The full expression for H(k,k2,t) is complicated, but for
the regime considered here we have H ≈ 1.

Considerable simplification occurs for 2-D cosine per-
turbations with Atwood number A = (ρ1 – ρ2)/(ρ1 + ρ2) ≈ 1.
If we assume that γk∝ k1/2, then Eq. (A1) reduces to
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(A3)

where k, k′ > 0, and the time dependence has been
dropped from the notation for simplicity. For example,
Eq. (5b) for the second harmonic of a single-mode per-
turbation,                      , comes from the second term in
the summation in Eq. (A3), where k = 2k1 and k′ = k1.

Another simple case of general interest arises for 
k = k3 ± k2. Here, Eq. (A3) reduces to 

(A4)

where         represents the spatial amplitude attained by
mode kn had the growth been entirely in the linear regime.
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